

MATHEMATICS

11

INTERMEDIATE PART 1

bilal Article

Chapter 7.

PERMUTATION, COMBINATION AND PROBABILITY

Bilal's Edu & Jobs News

Bilal's Edu & Jobs News on newsongoogle.com: Navigating the Future of

Education and Careers

A project of:https://newsongoogle.com/ Contact Us: bilalarticles1@gmail.com

Contents

Exercise 7.1		1
Exercise 7.2		3
Exercise 7.3		6
Exercise 7.4		9
Exercise 7.5		
	Q	
Exercise 7.7	and the second	16
Exercise 7.8	Nologente	
	NPOFC	

No

Chapter 7 https://newsongoo

Wondershare PDFelement

Factorial: The factorial of positive integer n is the product of n and all smaller positive n is the product of n and all smaller positive integer. **Factorial notation:** Let n be a positive integer. Then the product $n(n-1)(n-2) \dots 3, 2, 1$ is denoted by n! or $\angle n$ and read as n factorial. That is $n! = n(n-1)(n-1) \dots 3.2.1$ **Examples:** $2! = 2 \implies 2.1!$ 1! = 1 $3! = 3.2.1 = 6 \Rightarrow 3! = 3.2!$ $4! = 4.3.2.1 = 24 \Rightarrow 4! = 4.3!$ $5! = 5.4.3.2.1 = 120 \Rightarrow 5! = 5.4!$ $6! = 6.5.4.3.2.1 = 720 \Rightarrow 6! = 6.5!$ n! = n(n-1)!Prove that 0! = 1Proof: n! = n(n-1)Put n = 1 \Rightarrow 1! = 1 proved. Exercise 7.1 <u>Question#1</u> Evaluate each of the following: (*i*). 4! Solution: $4! = 4 \times 3 \times 2 \times 1$ = 24(*ii*). 6! <u>Solution:</u> $6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1$ = 710 8! $(iii). \frac{0}{7!}$ Solution: $\frac{8!}{3} = \frac{8 \times 7!}{3}$ 7! 7! = 8 $(iv). \frac{10!}{7!}$ <u>Solution:</u> $\frac{10!}{7!} = \frac{10 \times 9 \times 8 \times 7!}{7!}$ $= 10 \times 9 \times 8$ = 720 11! $(v). \frac{1}{4! 7!}$ <u>Solution:</u> $\frac{11!}{11!} = \frac{10 \times 9 \times 8 \times 7!}{10 \times 9 \times 8 \times 7!}$ 4! 7! 7! $= 10 \times 9 \times 8$ = 720 $(vi). \frac{1}{3!3!}$ 6!

<u>Solution:</u> $\frac{6!}{6!} = \frac{6 \times 5 \times 4 \times 3!}{6 \times 5 \times 4 \times 3!}$ 3!3! 3! $=\frac{120}{120}$ 6 = 208! $(vii). \frac{0}{4!2!}$ <u>Solution:</u> $=\frac{\frac{1}{8\times7\times6\times5\times4!}}{1}$ 8! 4!2! 4!2! = 84011! $(viii). \frac{11}{2!4!5!}$ <u>Solution:</u> $\frac{11\times10\times9\times8\times7\times6\times5!}{11\times10\times9\times8\times7\times6\times5!}$ 11! 2!4!5! 2!4!5! $=\frac{332640}{332640}$ 48 = 6930**9**! $(ix). \frac{1}{2!(9-2)!}$ <u>Solution:</u> 9! 9! 2!(9-2)! 2!7! $=\frac{9\times8\times7!}{}$ 2!7! 72 2 = = 36 15! (x) $\frac{15!(4-4)!}{15!(4-4)!}$ <u>Solution:</u> 15! 15! $=\frac{1}{15!(0!)}$ 15!(4-4)! $=\frac{1}{1}$:: 0! = 10! = - = 13! (**xi**). 0! <u>Solution:</u> $\frac{3!}{0!} = \frac{3 \times 2 \times 1}{1}$ $= 3 \times 2 \times 1$ = 6(*xii*). 4! 0! 1! <u>Solution:</u> 4! $0! 1! = (4 \times 3 \times 2 \times 1)(1)(1)$ = 24<u>Question#2</u> Write each of the following in the factorial form: (*i*). 6.5.4. <u>Solution:</u> Multiply and divide by 3! 6.5.4.3! 3! 6! 3! =(*ii*). 12.11.10 <u>Solution:</u> Multiply and divide by 9!

hare ent

Class 11 **Chapter 7** 12.11.10.9! 9! 12! = (n-r)!91 n!(*iii*). 20.19.18.17 (n-r)!<u>Solution:</u> **Permutation:** Multiply and divide by 16! 20 .19 .18 .17 .16! 16! $=\frac{20!}{16!}$ 10.9 (**iv**). 2.1 <u>Solution:</u> Multiply and divide by 8! 10.9.8! 8! $=\frac{10!}{2!8!}$ product p.q Prove that 8.7.6 (**v**). 3.2.1 <u>Solution:</u> **Proof:** Multiply and divide by 5! $\frac{8.7.6}{2} = \frac{8.7.6.5!}{2}$ 3! 5! 3.2.1 8! $=\frac{1}{3!5!}$ $(vi). \frac{52.51.50.49}{4.2001}$ 4.3.2.1 ways. And so on. <u>Solution:</u> Multiply and divide by 48! 52.51.50.49 4.3.2.1 = 52.51.50.49.48! 4.3.2.1.48! 52! $=\frac{52!}{4!48!}!$ (vii). n(n-1)(n-2)<u>Solution:</u> Multiply and divide by (n-3)!n(n-1)(n-2)(n-3)!(n-3)!n!**Corollary:** = • (n-3)!If r = n then (viii).(n+2)(n+1)(n)<u>Solution:</u> Multiply and divide by (n-1)!(n+2)(n+1)(n)(n-1)!(n-1)! $=\frac{(n+2)!}{(n+2)!}$ (n-1)! $(ix). \frac{(n+1)(n)(n-1)}{n-1}$ 3.2.1 <u>Solution:</u> Multiply and divide by (n-2)!(n+1)(n)(n-1)(n-2)!3.2.1(n-2)! $=\frac{(n+1)!}{3!(n-2)!}$ (*x*). n(n-1)(n-2)....(n-r+1)<u>Solution:</u> As the numbers is decreasing by 1 so the next number would be

(n-r+1) = n-r

Multiply and divide by (n-r)!n(n-1)(n-2)....(n-r+1)(n-r)!

A permutation of n different objects taken $r(\leq n)$ at a time is an arrangement of the r objects. Generally it is denoted as ${}^{n}P_{r} = \frac{n!}{(n-r)!}$

Fundamental principle of counting:

Suppose A and B are two events. The first event A can be occur in p different ways. After A has occupied B can occur in q different ways.

The number of ways that two events can occur is the

$${}^{n}P_{r} = n(n-1)(n-2)\dots(n-r+1) = \frac{n!}{(n-r)!}$$

As there are n different objects to fill up r places. So, the first place can be filled in *n* ways.

: repetitions are not allowed, the second place can be filled in (n-2) ways. The third place filled in (n-2)

The *r*th place has n - (r - 1) = n - r + 1 choices to be filled in. therefore by the fundamental principle of counting, r places can be filled by n different objects in $n(n-1)(n-1) \dots (n-r+1)$ ways.

 $: {}^{n}P_{r} = n(n-1)(n-2) \dots (n-r+1)$ $= \frac{n(n-1)(n-2)\dots(n-r+1)(n-r)(n-r-1)\dots 3.2..1}{n-r-1}$ $(n-r)(n-r-1) \dots 3.2.1$

$$\Rightarrow {}^{n}P_{r} = \frac{n!}{(n-r)!}$$
Hence proved.

$${}^{n}P_{n} = \frac{n!}{(n-n)}$$

$$= \frac{n!}{0!} = \frac{n!}{1}$$
$$\Rightarrow {}^{n}P_{n} = n!$$

Class 11	Chapter 7	https://newsongoog	Wondershare PDFelement
Exercise 7.2		$\Rightarrow 8 = 11 - n$	
Question#1		$\Rightarrow n = 11 - 8$	
Evaluate the following:		$\Rightarrow n = 3$ (<i>iii</i>). $^{n}P_{4}: ^{n-1}P_{3} = 9:1$	
(<i>i</i>). ²⁰ <i>P</i> ₃		(111): 74: 73-9:1 <u>Solution:</u>	
Solution:		-	
$\overline{{}^{20}P_3 = \frac{20!}{(20-3)!}}$		$\frac{{}^{n}P_{4}}{{}^{n-1}P_{3}} = \frac{9}{1}$	
$=\frac{20!}{17!}$		$\Rightarrow {}^{n}P_{4} = 9 {}^{n-1}P_{3}$	
17! 20.19.18.17!		$\Rightarrow \frac{n!}{(n-4)!} = 9 \frac{n(n-1)!}{(n-1-3)!}$	
$=\frac{20.19.18.17!}{17!}$		$\Rightarrow \frac{n(n-4)!}{(n-4)!} = 9 \frac{(n-1-3)!}{(n-4)!}$	
= 20.19.18 = 6840		$\Rightarrow (n-4)! = 9 (n-4)!$ $\Rightarrow n = 9$	
(<i>ii</i>). ¹⁶ <i>P</i> ₄		<i>Question#3</i>	
Solution:		Prove from the first principle th	hat:
$\overline{{}^{16}P_4 = \frac{16!}{(16-4)!}} = \frac{16!}{12!}$		$(i). \ {}^{n}P_{r} = n. \ {}^{n-1}P_{r-1}$	
$=\frac{16-4)!}{12!}$		Solution:	
= 12! = 16.15.14.13		$\overline{\boldsymbol{R}.\boldsymbol{H}.\boldsymbol{S}}=\boldsymbol{n}.^{n-1}\boldsymbol{P}_{r-1}$	
= 43680		$= n \cdot \frac{(n-1)!}{(n-1-(r-1))!}$	
(iii). ¹² P5			
<u>Solution:</u>		$=\frac{n(n-1)!}{(n-1-r+1)!}$	
${}^{12}P_{5} = \frac{12!}{(12-5)!} = \frac{12!}{7!} = \frac{12.11.10.9.8.7!}{7!}$		$=\frac{(n-1)!}{(n-r)!}$	
= 95040		$=\frac{n!}{(n-r)!}$	
$(iv). {}^{10}P_{7}$		$= {}^{n}\boldsymbol{P}_{r} = L.H.S$	
<u>Solution:</u>		(<i>ii</i>). ${}^{n}P_{r} = {}^{n-1}P_{r} + r. {}^{n-1}P_{r-1}$	
$^{10}P_7 = \frac{10!}{(10-7)!} = \frac{10!}{3!} = \frac{10.9.8.7.5.6.4.3!}{3!}$	NO	<u>Solution:</u>	
= 604800		$R.H.S = {}^{n-1}P_{r-1} + r.{}^{n-1}P_{r-1}$	
(v). ⁹ P ₈		$=\frac{(n-1)!}{(n-1-r)!}+r.\frac{(n-1)!}{(n-1-r+1)!}$	
<u>Solution:</u> 9 9 9 987654321		$=\frac{(n-1)!}{(n-r-1)!}+r.\frac{(n-1)!}{(n-r)!}$	
${}^{9}P_{8} = \frac{9!}{(9-8)!} = \frac{9!}{1!} = \frac{9.8.7.6.5.4.3.2.1}{1}$	\bigcirc	$= \frac{(n-1)!}{(n-r-1)!} + r \cdot \frac{(n-1)!}{(n-r)(n-r-1)!}$	
= 362880			
<u>Question#2</u> Find the value of n when:		$=\frac{(n-1)!}{(n-r)(n-r-1)!}\left(1+r.\frac{n!}{(n-r)}\right)$	
$(i). \ {}^{n}P_{2} = 30$		$=\frac{(n-1)!}{(n-r)(n-r-1)!}\left(\frac{n-r+r}{(n-r)}\right)$	
Solution:		$=\frac{(n-1)!}{(n-r-1)!}\left(\frac{n}{(n-r)}\right)$	
$\overline{{}^{n}P_{2}=30}$		$=\frac{n (n-1)!}{(n-r)(n-r-1)!}$	
$\Rightarrow \frac{n!}{(n-2)!} = 30$		$= \frac{n!}{(n-r)!}$	
$\Rightarrow \frac{n(n-2)!}{(n-2)!} = 30$		$= {}^{n-r}P_{r} = L.H.S$	
$\Rightarrow (n-2)! = 30$ $\Rightarrow n(n-1) = 30$			
$\Rightarrow n(n-1) = 50$ $\Rightarrow n(n-1) = 6.5$		How many signals can be given	bv 5 laas of
$\Rightarrow n = 6$		different colours, using 3 lags a	, ,
$(ii). {}^{11}P_n = 11.10.9$		<u>Solution:</u>	
<u>Solution:</u>		here $n = 5$, $r = 3$	
$^{11}P_n = 11.10.9$		Number of signals = ${}^{5}P_{3}$	
$\Rightarrow \frac{11.10.9.8!}{(11-n)!} = 11.10.9$		$=\frac{5!}{(5-3)!}=\frac{5!}{2!}$	
81		$=\frac{5.4.3.2!}{2!}=60$	
$\Rightarrow \frac{8!}{(11-n)!} = 1$		$=\frac{1}{2!}=60$	
$\Rightarrow 8! = (11 - n)!$			

Class 11	Chapter 7	https://newsongoogl	Wondershar PDFelement
<u>Question#5</u>		Number of numbers of the form 2	$3 * * * = {}^{3}P_{3} = 6$
How many signals can be given	by 6 lags of	Number of numbers of the form 2	$5 * * * = {}^{3}P_{3} = 6$
different colours when any num	nber of flags	Number of numbers of the form 2	$6 * * * = {}^{3}P_{3} = 6$
can be used at a time?		Number of numbers of the form 3	$**** = {}^{4}P_{4} = 24$
<u>Solution:</u>		Number of numbers of the form 5	$**** = {}^{4}P_{4} = 24$
Total number of flags = n = 6		Number of numbers of the form 6	$***={}^{4}P_{4}=24$
Number of signals using one flag	$=^{6}P_{1}=6$	Thus, the total number formed	' = 6 + 6 + 6 + 6
Number of signals using two flags	$={}^{6}P_{2}=30$	24 + 24 + 24 = 90	
Number of signals using three flag	$qs = {}^{6}P_{3} = 120$	<u>Alternative Solution:</u>	
Number of signals using four flags	$s = {}^{6}P_{4} = 360$	Permutation of 5 digits numbers =	${}^{5}P_{5} = 120$
Number of signals using five flags	$e^{-6}P_{5} = 720$	Numbers less than 23000 are of t	he form 1 ****
Number of signals using six flags	$=^{6}P_{6}=720$	Then permutations =4P4 = 24	
Total number of signals = $6 + 30$	+ 120 + 360 +	If number less than 23000 are of	<i>the form</i> 21 *
720 + 720 = 1956		**	
<u>Question#6</u>		Then permutations $={}^{3}P_{3}=6$	
How many words can be form	ed from the	Thus, number greater than 230	00 formed =
letters of the following words us	ing all letters	120 - 24 - 6 = 90	
when no letter is to be repeated	<i> :</i>	<u>Question#9</u>	
(i). PLANE		Find the number of 5-digit num	
<u>Solution:</u>		be formed from the digits 1, 2,	4, 6, 8 (when
Since number of letters in PLANE	n = n = 5	no digit is repeated), but	
Therefore, total words form = 5P_5	5 = 120	(i) the digits 2 and 8 are next t	ro each other.
(ii). OBJECT	2	<u>Solution:</u>	
<u>Solution:</u>		Total number of digits = 5	, , ,
Since number of letters in OBJEC	T = n = 6	If we take 28 as a single digit, the	hen number of
Therefore, total words forms =6P	<i>c</i> ₆ = 720	$numbers = {}^{4}P_{4} = 24$, , ,
(iii). FASTING		If we take 82 as a single digit, th	hen number of
<u>Solution:</u>		$numbers = {}^{4}P_{4} = 24$	
Since number of letters in FASTI	$\mathcal{NG} = n = 7$	So, the total numbers when 2 and	8 are next to
Therefore, total words forms = ⁷ P	<i>7</i> = 5040	<i>each other</i> = $24 + 24 = 48$	
		(ii).the digits 2 and 8 are not	next to each
<u>Question#7</u>		other.	
How many 3-digit numbers can	be formed by	<u>Solution:</u>	120
using each one of the digits 2, 3	, 5, 7, 9 only	Number of total permutations = ${}^{5}F$	
once?		thus, number of numbers when 2	
<u>Solution:</u>		next to each other = $120 - 48 = 7$	ζ
Number of digits $= n = 5$		<u>Question#10</u>	ha farmad
So, numbers forms taken 3 digits	at a time $={}^{5}P_{3}$	How many 6-digit numbers cal	
= 60		without repeating any digit from	-
<u>Question#8</u>		1, 2, 3, 4, 5? In how many of a	rnem will U De
Find the numbers greater than 2.		at the tens place?	
be formed from the digits 1,	2,3,5,6,	<u>Solution:</u>	6 diaita_60
without repeating any digit		Since number of permutations of 0	$G uigits = P_6 =$
HINT: The first two digits on l	L.H.S. will be	But 0 at extreme left is meaning l	less
23 etc.		so, number of permutation when 0	
<u>Solution:</u>		$left = {}^{5}P_{5} = 120$	
Number greater than 23000 can b	e tormed as		
			4 Page

Class 11 Cha	pter 7 https://newsongoogle.
Thus, the number formed by 6 digits = 72	20 - Question#14
120 = 600	In how many ways can 5 boys and 4 girls be
Now if we fix 0 at ten place then number for	
$={}^{5}P_{5}=120$	boys occupy alternate seats?
<u>Question#11</u>	Solution:
How many 5-digit multiples of 5 can be for	med Let the five boys be $B_1B_3A_5^B$, B, B and the
from the digits 2, 3, 5, 7,9, when no dig	it is four girls are G_1 , G_2 , G_3 , G_4 , G_5
repeated.	seats plane is B_1 , G_1 , B_2 , G_2 , B_3 , G_3 , B_4 , G_4 , B_5
<u>Solution:</u>	Then the permutations
Number of digits = 5	$={}^{5}P_{1} \times {}^{4}P_{1} \times {}^{4}P_{1} \times {}^{3}P_{1} \times {}^{3}P_{1} \times {}^{2}P_{1} \times {}^{2}P_{1} \times {}^{1}P_{1} \times$
For multiple of 5 we must have 5 at extr	reme ${}^{1}P_{1}$
right so number forms= ${}^{4}P_{4} = 24$	$= 5 \times 4 \times 4 \times 3 \times 3 \times 2 \times 2 \times 1 \times 1 = 2880$
<u>Question#12</u>	Theorem:
In how many ways can 8 books including a	2 on The number of permutations of n objects taken all at
English be arranged on a shelf in such a	way a time when n_1 , of them are alike of one kind, n_2 are alike of second kind n_3 are alike of third are given by
that the English books are never together	
<u>Solution:</u>	$\begin{pmatrix} n\\ n_1 & n_2 & n_3 \end{pmatrix} = \frac{n!}{n_1! n_2! n_3!}$
Total numbers of books = 8	Proof:
Total number of permutations $={}^{8}P_{8} = 40320$	We know that arrangement of n_1 like objects
Let E_1 and E_2 denotes two English books the	
Number of permutation when E_1E_2 p	
together $=$ ⁷ $P_7 = 5040$	Arrangement of n_3 like objects = ${}^{n_3}P_{n_3} = n_3!$
Number of permutation when E_1E_2 p	
$together = {^7P_7} = 5040$	Then total permutations = $x_n! n_2! n_3!$ But
So total permutation when E_1 and E_2 togethe	er = no. of permutations of n objects = n!
5040 + 5040 = 10080	Therefore
Required permutation when English books are	$x. n_1: n_2: n_3: - n:$
together = 40320 - 10080 = 30240	$\Rightarrow x = \frac{n!}{n_1! n_2! n_3!}$
<u>Question#13</u>	$n_1! n_2! n_3!$
Find the number of arrangements of 3 b	(n_1, n_2, n_3)
on English and 5 books on Urdu for pla	
them on a shelf such that the books on	
same subject are together.	by the points on a circle is called circular permutation.
<u>Solution:</u>	and
Let E_1, E_2, E_3 be the book on English	und
U_1 , U_2 , U_3 , U_4 , U_5 be the book on Urdu Then the permutation when books are array	nood
· ·	igeu
<i>as</i> E_1 , E_2 , E_3 , U_1 , U_2 , U_3 , U_4 , U_5 = ³ $P_3 \times {}^5P_5 = 6 \times 120 = 720$	
Books are arrai	nged
\mathcal{AsU}_1 , U_2 , U_3 , U_4 , U_5 , E_1 , E_2 , E_3	
$={}^{5}P_{5} \times {}^{3}P_{3} = 120 \times 6 = 720$	
So total permutation when books of s	same
<i>subject are together</i> = 720 + 720 = 1440	
1	

https://newsongoog

Wondershare PDFelement

Class 11 **Chapter 7** Exercise 7.3 3!× 4! ×2!× 2! ×1! ×1! 6227020800 Question#1 (6)(24)(2)(2)How many arrangements of the letters of the = 10810800following words, taken all Question#2 together, can be made: How many permutations of the letters of the word PANAMA can be made, if P is to be the (i). PAKPATTAN Solution: Total number of letters = 9<u>Solution:</u> P is repeated 2 times A is repeated 3 times form T is repeated 2 times K and N come only once. Required number of permutations = $\binom{9}{2,3,2,1,1}$ 2!×3!×2!×1!×1! $=\frac{\frac{362880}{(2)(6)(2)}}{(2)(6)(2)}$ = 1512013! $=\frac{1}{3!\times1!\times1!}$ (ii). PAKISTAN $=\frac{120}{120}$ <u>Solution:</u> 6 = 20Total number of letters = 8A is repeated 2 times P, K, I, S, T and N come only once. Required number of permutations = $\binom{8}{2,1,1,1,1,1,1,1}$ 8! 2!× 1! ×1!× 1! ×1! ×1! ×1! Solution: $=\frac{40320}{10}$ = 20160(iii). MATHEMATICS Solution: Total number of letters = 11M is repeated 2 times A is repeated 2 times T is repeated 2 times H, E, I, C and S come only once. Required number of permutations = $\begin{pmatrix} 11 \\ 2.2.2.1.1.1.1 \end{pmatrix}$ $=\frac{720}{4}$ 11!2!× 2! ×2!× 1! ×1! ×1! ×1!×1! = 18039916800 8 = 4989600(*iv*). ASSASSINATION <u>Solution:</u> Solution: Total number of letters =13 A is repeated 3 times S is repeated 4 times I is repeated 2 times

N is repeated 2 times

T and O come only once.

Required number of permutations = $\begin{pmatrix} 13 \\ 3,4,2,2,1,1 \end{pmatrix}$

first letter in each arrangement? If P is the first letter, then words are of the P *****, where five * can be replace with A, N, A, M, A. So, number of letters = 5A is repeated 3 times M, N appears only once So required permutations = $\begin{pmatrix} 5 \\ 3 & 4 & 1 \end{pmatrix}$ <u>Question#3</u> How many arrangements of the letters of the word ATTACKED can be made, if each arrangement begins with C and ends with K? If C be the first letter and K is the last letter then words are of the form C ***** K . where each * can be replaced with A, T, T, A, E, D. So number of letters = 6A is repeated 2 times T is repeated 2 times E and D come only once. Required number of permutations = $\begin{pmatrix} 6\\ 2.2.1.1 \end{pmatrix}$ 2!× 2! ×1! ×1! <u>Question#4</u> How many numbers greater than 1000,000 can be formed from the digits 0, 2,2,2,3,4,4? The number greater than 1000000 are of the following forms. If numbers are of the form 2 *****, where each * can be filled with 0, 2, 2, 2, 3, 4, 4 Then number of digits = 6 2 is repeated 2 times 4 is repeated 2 times

0 and 3 come only once.	$=\frac{720}{12}$
So, number formed = $\begin{pmatrix} 6\\2,2,1,1 \end{pmatrix}$	$= 60^{12}$
$=\frac{6!}{2! \times 2! \times 1! \times 1!}$	Hence number greater than $1000000 = 420 -$
	60 = 360
$=\frac{720}{4}$ = 180	<u>Question#5</u>
Now if numbers are of the form 3 ****	How many 6-digit numbers can be formed from
where each * can be filled with 0,2,2,2	The algits $2, 2, 3, 3, 4, 4$? How many of them
Then number of digits = 6	will he between 400,000 and 450,000?
2 is repeated 3 times	<u>Solution:</u>
4 is repeated 2 times	Total number of digits $= 6$
0 comes only once.	Number of $2's = 2$
	Number of $3's = 2$
So number formed = $\begin{pmatrix} 6\\ 3,2,1 \end{pmatrix}$	Number of $4's = 2$
$=\frac{6!}{3!\times 2!\times 1!}$	So, number formed by these 6 digits = $\begin{pmatrix} 6\\2,2,2 \end{pmatrix}$
$=\frac{720}{12}$	$=\frac{6!}{(2!)(2!)(2!)}$
= 60	$=\frac{720}{2}=\frac{720}{2}$
Now if numbers are of the form 4 ****	- 90
where each $*$ can be filled with 0, 2,2,2	,3,4 The numbers lie between 400,000 and 430,000
Then number of digits = 6	are only of the form 42 ****, where each * can be
2 is repeated 3 times	filled by 2, 3, 3, 4.
0, 3 and 4 come only once.	Here number of digits $= 4$.
So, number formed = $\begin{pmatrix} 6\\ 3,1,1 \end{pmatrix}$	Number of $2's = 1$
$=\frac{6!}{3! \times 1! \times 1!}$	Number of $3's = 2$
$=\frac{\frac{720}{6}}{6}$	Number of $4's = 1$
= 120	So, number formed = $\begin{pmatrix} 4\\ 1,2,1 \end{pmatrix}$
	$00000 = \frac{6!}{(1!)(2!)(1!)}$
So required numbers greater than 10	$00000 = \frac{24}{(1)(2!)(1!)} = \frac{24}{2}$
180 + 60 + 120 = 360.	$ \begin{array}{ccc} (1)(2)(1) & 2 \\ = 12 \end{array} $
<u>Alternative</u>	Question#6
No. of digits = 7 No. of $2's = 3$	11 members of a club form 4 committees of
No. of $4's = 2$	3, 4, 2, 2 members so that no member is a
0 and 3 come only once.	member of more than one committee. Find the
Permutations of 7 digits number = $\begin{pmatrix} 7\\ 3,2, \\ 7 \end{pmatrix}$	Solution:
$=\frac{7!}{3! \times 2! \times 1! \times 1!}$	Total members = 11
$=\frac{5040}{12}$	Members in first committee $= 3$
= 420	Members in second committee $= 4$
Number less than 1,000,000 are of the	form Members in third committee = 2
0 *****, where each * can be	
with 2, 2, 3, 4, 4.	So required number of committees = $\binom{11}{3,4,2,2}$
No. of digits $= 6$	
No. of $2's = 3$	$=\frac{11!}{3! \times 4! \times 2! \times 2!}$ 39916800
No. of $4's = 2$	$=\frac{39916800}{(6)(24)(2)(2)}$
3 comes only once	= 69300
So, permutations = $\begin{pmatrix} 6\\ 3,2,1 \end{pmatrix}$	<u>Question#7</u>
$=\frac{6!}{3!\times 2!\times 1!}$	The D.C.Os of 11 districts meet to discuss
0.72.71.	the law and order situation in their districts.

Chapter 7

In how many ways can they be seated at a round table, when two D.C.Os insist on sitting together?

Solution:

Number of D.C.O's = 9

Let D_1 and D_2 be the two D.C.O's insisting to sit together so consider them one.

If D_1 D_2 sit together then permutations = ${}^{9}P_{9} =$ 362880

If D_2 D_1 sit together then permutations = ${}^{9}P_{9} =$ 362880

So total permutations = 362880 + 362880 =725760

Question#8

The Governor of the Punjab calls a meeting of 12 officers. In how many ways can they be seated at a round table?

Solution:

Fixing one officer on a particular seat, we have permutations of remaining 11 officers = ${}^{11}P_{11} = 39916800$

Question#9

Fatima invites 14 people to a dinner. There are 9 males and 5 females who are seated at two different tables so that guests of one sex sit at one round table and the quests of the other sex at the second table. Find the number of ways in which all gests are seated. Solution:

9 males can be seated on a round table $= {}^{8}P_{8} = 40320$

And 5 females can be seated on a round table $=^{4}P_{4} = 24$

So, permutations of both = $40320 \times 24 = 967680$ Question#10

Find the number of ways in which 5 men and 5 women can be seated at a round table in such a way that no two persons of the same fix man sex sit together.

Solution:

Now if women sit between the two

men then their permutations $={}^{5}P_{5} = 120$

So total permutations = $24 \times 120 = 2880$

https://newsongoogl

Wondershare PDFelement

Question#11

In how many ways can 4 keys be arranged on a circular key ring? Solution:

Fixing one key we have permutation = $r_3 = \sigma$ Since above figures of arrangement are reflections of each other Therefore permutations $=\frac{1}{2} \times 6 = 3$

<u>Question#12</u> How many necklaces can be made from 6

beads of different colours?

Solution:

Number of beads = 6

Fixing one bead, we have permutation $={}^{5}P_{5} =$ 120

Since above figures of arrangement are reflections of each other

Therefore permutations = $\frac{1}{2} \times 120 = 60$

Combination:

When selection of objects is done neglecting its order, this is called combination.

The number of combinations of *n* different – objects taken 'r' at a time is denoted by ${}^{n}C_{r}$ or $\binom{n}{r}$ or C(n, r) and defined as ${}^{n}C_{r} = \frac{{}^{n}P_{r}}{r!}$

Or

ⁿ C_r =
$$\frac{n!}{r!(n-r)!}$$
 \therefore ⁿP_r = $\frac{n!}{(n-r)!}$
ove that

Pro

Proof:

$${}^{n}\mathbf{C}_{r} = \frac{n!}{r!(n-r)!}$$

There are "Cr combinations of n different objects taken r at a time. Each combination consists of r different objects which can be permuted among t rise themselves ways. So each combination will give to r!

Class	11
--------------	----

Wondershare PDFelement

Chapter 7 permutation. Thus there will be ${}^{n}C_{r} imes r!$ Permutation of n different objects taken r at a time. ${}^{n}C_{r} \times r! = {}^{n}P_{r}$ ${}^{\mathsf{n}}\mathsf{C}_{\mathsf{r}} \times r! = \frac{n!}{(n-r)!}$ \Rightarrow ⁿ C_r = $\frac{n!}{r!(n-r)!}$ Hence proved. **Corollary:** If r = n then "C_n $= rac{n!}{n!(n-n)!}$ $=\frac{n!}{n!\,o!}=1$ If r = 0 then ${}^{n}C_{0} = \frac{n!}{0!(n-0)!}$ ii $=\frac{n!}{0!\,n!}=1$ **Complementary Combination:** Prove that ${}^{n}C_{r} = {}^{n}C_{n-r}$ proof: $R.H.S = {}^{n}C_{n-r}$ $= \frac{n!}{(n-r)! (n-(n-r))!}$ $= \frac{n!}{(n-r)! (n-n+r)!} = \frac{n!}{(n-r)! r!}$ Nor $=\frac{n!}{r!(n-r)!}={}^{\mathsf{n}}\mathsf{C}_{\mathsf{r}}=L.H.S$ Exercise 7.4 Question#1 Evaluate the following: (*i*). ¹²C₃ <u>Solution:</u> $^{12}C_3 = \frac{12!}{(12-3)!3!}$ $=\frac{12!}{9!3!}$ $=\frac{12.11.10.9!}{12.11.10.9!}$ 9[3] $=\frac{12.11.10}{12.11}$ $=\frac{1320}{6}$ = 220(*ii*). ²⁰C₁₇ <u>Solution:</u> 20! ${}^{20}\mathcal{C}_{17} = \frac{20!}{(20-17)!17!}$ $=\frac{20!}{3!17!}$ $=\frac{20.19.18!}{3!7!}$ $=\frac{20.19.18}{20.19.18}$ 3! $=\frac{6840}{1000}$ 6

= 1140(*iii*). *ⁿC*₄ <u>Solution:</u> ${}^{\mathsf{n}}\mathcal{C}_4 = \frac{\mathsf{n}!}{(\mathsf{n}-4)!4!}$ $=\frac{n(n-1)(n-2)(n-3)(n-4)!}{n-2}$ (n-4)!4! $=\frac{n(n-1)(n-2)(n-3)}{n-2}$ <u>Question#2</u> Find the value of n, when (*i*). ${}^{n}C_{5} = {}^{n}C_{4}$ Solution: Since, ${}^{n}C_{5} = {}^{n}C_{4}$ $\Rightarrow {}^{n}C_{5} = {}^{n}C_{4}$ $:: {}^{n}C_{r} = {}^{n}C_{n-r}$ \Rightarrow n - 5 = 4 \Rightarrow n = 4 + 5 \Rightarrow n = 9 (*ii*). ${}^{n}C_{10} = \frac{12 \times 11}{2!}$ Solution: $\overline{{}^{n}C_{10} = \frac{12 \times 11}{2!}} \Rightarrow {}^{n}C_{10} = \frac{12 \times 11 \times 10!}{2! \times 10!}$ $\Rightarrow {}^{\mathsf{n}}\mathcal{C}_{10} = \frac{12!}{(12-10)!10!}$ $\Rightarrow {}^{n}C_{10} = {}^{12}C_{10}$ \Rightarrow n = 12 (*iii*). ${}^{n}C_{12} = {}^{n}C_{6}$ Solution: $:: {}^{n}C_{r} = {}^{n}C_{n-r}$ \Rightarrow ^{*n*} $C_{12} =$ ^{*n*} C_{n-12} $\Rightarrow {}^{n}C_{6} = {}^{n}C_{n-12}$ $\Rightarrow 6 = n - 12$ $\Rightarrow n = 18$ <u>Question#3</u> Find the values of n and r, when (i). ${}^{n}C_{r} = 35$ and ${}^{n}P_{r} = 210$ Solution: ${}^{n}C_{r} = 35$ Since, ${}^{n}\mathcal{C}_{r} = \frac{12 \times 11}{2!}$ $\Rightarrow \frac{n!}{(n-r)!r!} = 35$ $\Rightarrow \frac{\frac{n!}{(n-r)!}}{(n-r)!} = 35. r! \dots (i)$ Also, ${}^{n}P_{r}=210$ $\Rightarrow \frac{n!}{(n-r)!} = 210$... (ii) Comparing eq. (i) and eq. (ii) 35.r! = 210 $\Rightarrow \frac{n(n-1)(n-2)(n-3)!}{(n-2)!} = 210$ (n-3)!

https://newsongoogle

Wondershare Class 11 Chapter 7 https://newsongoog PDFelement $\Rightarrow n(n-1)(n-2) = 210$ (b) No. of triangles= ${}^{5}C_{3}$ $\Rightarrow n(n-1)(n-2) = 7.6.5$ 5! 5! $=\frac{5!}{3!(5-3)!}=\frac{1}{3!2!}$ \Rightarrow n = 7 (*ii*). ${}^{n-1}C_{r-1}: {}^{n}C_{r}: {}^{n+1}C_{r+1} = 3:6:11$ $=\frac{5.4.3!}{3!\,2!}=10$ <u>Solution:</u> $\frac{n(n-1)!}{(n-1-r+1)(r-1)!} : \frac{n!}{(n-r)!r!} = 3:6$ (ii). 8 sides <u>Solution:</u> $\Rightarrow \frac{n(n-1)!}{(n-r)!(r-1)!} : \frac{n!}{(n-r)!r!} = 3:6$ (a). 8 sides (n-1)! n = 8 $\Rightarrow \frac{\frac{(n-1)!}{(n-1)!(r-1)!}}{\frac{n!}{2}} = \frac{1}{2}$ No. of diagonals= ${}^{8}C_{2}-8$ (n-r)!r! $\frac{(n-1)!}{(n-r)!(r-1)!} : \frac{(n-r)!r!}{n!} = \frac{1}{2}$ $=\frac{31}{2!(8-2)!}-8$ $\Rightarrow \frac{r}{n} = \frac{1}{2}$ $=\frac{8.7.6!}{(2.1)!\,6!}-8=\frac{8.7.6!}{(2.1)!\,6!}-8$ 8.7.6! \Rightarrow n = 2r(i) 28 - 8 = 20Now, consider (b) No. of triangles= ${}^{8}C_{3}$ ${}^{n}\!\mathcal{C}_{r} \, : \, {}^{n+1}\!\mathcal{C}_{r+1} = 6 : 11$ 8! 8.7.6.5! $\Rightarrow \frac{n!}{(n-r)!r!} : \frac{(n+1)!}{(n+1-r-1)!(r+1)!} = 6 : 11$ $\frac{3!(8-3)!}{3!5!} = \frac{3110!}{3!5!}$ $\Rightarrow \frac{n!}{(n-r)!r!} : \frac{(n+1)!}{(n-r)!(r+1)!} = 6 : 11$ $=\frac{8.7.6}{3.2.1}=42$ n! $\Rightarrow \frac{\frac{11!}{(n-r)!r!}}{\frac{(n+1)!}{(n-r)!(r+1)!}} = \frac{6}{11}$ (iii). 12 sides <u>Solution:</u> $\Rightarrow \frac{n!}{(n-r)!r!} \times \frac{(n-r)!(r+1)!}{(n+1)!} = \frac{6}{11}$ $\Rightarrow \frac{n!}{r!} \times \frac{(r+1)!}{(n+1)!} = \frac{6}{11}$ (a). 12 sides n = 12No. of diagonals= ¹²C2-12 $\Rightarrow \frac{n!}{r!} \times \frac{(r+1)r!}{(n+1)n!} = \frac{6}{11}$ 12! $=\frac{1}{2!(12-2)!}-12$ $\Rightarrow \frac{(r+1)}{(n+1)} = \frac{6}{11}$ 12.11.10! (2.1)10! - 12 \Rightarrow 11(r + 1) = 6(n + 1) $\Rightarrow 11(r+1) = 6(2r+1)$ 66 - 12 = 54 $\Rightarrow 11r + 11 = 12r + 6$ (b) No. of triangles= ${}^{12}C_3$ $\Rightarrow 11r - 12r = 6 - 11$ 12! $\Rightarrow -r = -5$ $=\frac{1}{3!(12-3)!}$ $\Rightarrow r = 5$ 12.11.10.9! $\overline{(3.2.1)9!} = 220$ Putting value of r in equation (ii) \Rightarrow n = 10 <u>Question#4</u> <u>Question#5</u> How many (a) diagonals and (b) triangles can The members of a club are 12 boys and 8 be formed by joining the vertices of the girls. In how many ways can a committee of 3 polygon having: boys and 2 girls be formed? (*i*). 5 sides <u>Solution:</u> Solution: Number of boys = 12<u>Note:</u> So, committees formed taking 3 boys $12 = {}^{12}C_3 =$ For diagonal "C2-n 220 For triangle = ${}^{n}C_{3}$ Number of girls = 8(a). 5 sides So, committees formed by taking 2 girls = ${}^{8}C_{2}$ = n = 528 No. of diagonals = ${}^{5}C_{2}-5$ Now total committees formed including 3 boys $=\frac{5!}{2!(5-2)!}-5$ and 2 girls = $220 \times 28 = 6160$ <u>Question#6</u> $=\frac{5!}{2!\,3!}-5=\frac{5.4.3!}{2!\,3!}-5$ 10 - 5 = 5

Class 11 Chapter 7	https://newsongoog
How many committees of 5 members can be	(i). 4 women
chosen from a group of 8 persons when each	<u>Solution:</u>
committee must include 2 particular persons?	Number of men = 8
<u>Solution:</u>	Number of women = 10
Number of persons $= 8$	We have to form combination of 4 women out of
Since two particular persons are included in	10 and 3 men out of 8
every committee so we have to	$={}^{10}C_4 + {}^8C_3 = 210 \times 36 = 11760$
find combinations of 6 persons 3 at a time = ${}^{6}C_{3}$	(ii). at the most 4 women
= 20	Solution:
Hence number of committees $= 20$	At the most 4 women means that women are less
<u>Question#7</u>	than or equal to 4, which
In how many ways can a hockey team of 11	implies the following possibilities (1W,6M
players be selected out of 15 players? How),(2W,5M),(3W,4M),(4W,3M),(7M)
many of them will include a particular player?	$= {}^{10}C_1 \times {}^{8}C_6 + {}^{10}C_2 \times {}^{8}C_5 + {}^{10}C_3 \times {}^{8}C_4 + {}^{10}C_4 \times {}^{8}C_3$
<u>Solution:</u>	+ ⁸ C ₇
The number of players = 15	= (10)(28) + (45)(56) + (120)(70) + (210)(56) +
So, combination, taking 11 players at a time $=$	(8)
${}^{15}C_{11} = 1365$	= 280 + 2520 + 8400 + 117603 + 8
Now if one particular player is in each collection	= 22968 (iii) at least 4 women
then number of combinations $=$ $^{14}C_{10}$ $=$ 1001	(iii). at least 4 women <u>Solution:</u>
<u>Question#8</u>	At least 4 women means that women are greater
Show that: ${}^{l6}C_{11} + {}^{16}C_{10} = {}^{7}C_{11}$	than or equal to 4, which
<u>Solution:</u>	implies the following possibilities (4W,3M
$L.H.S = {}^{16}C_{11} + {}^{16}C_{10}$),(5W,2M),(6W,1M),(7W)
$= \frac{16!}{(16-11)!11!} + \frac{16!}{(16-10)!10!}$	$= {}^{10}C_4 \times {}^{8}C_3 + {}^{10}C_5 \times {}^{8}C_2 + {}^{10}C_6 \times {}^{8}C_1 + {}^{10}C_7$
$= \frac{16!}{5!11!} + \frac{16!}{6!10!}$	= (210)(56) + (252)(28) + (210)(8) + 120
5!11! 6!10! 	= 11760 + 7056 + 1680 + 120
$= \frac{16!}{5!11.10!} + \frac{16!}{6.5!10!}$	= 20616
$=\frac{16!}{10!5!}\left(\frac{1}{11}+\frac{1}{6}\right)$	<u>Question#10</u>
$=\frac{16!}{10!5!}\left(\frac{6+11}{66}\right)$	Prove that ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$
$=\frac{16!}{10!5!}\left(\frac{17}{66}\right)$	<u>Solution:</u>
$= \frac{\frac{10!5!}{66}}{\frac{16!}{10!5!}} \left(\frac{17}{11.6}\right)$	$\mathcal{L}.\mathcal{H}.\mathcal{S} = {}^{n}\mathcal{C}_{r} + {}^{n}\mathcal{C}_{r-1}$
$ = \frac{1}{10!5!} \left(\frac{11.6}{11.6} \right) $	$= \frac{n!}{(n-r)!r!} + \frac{n!}{(n-(r-1))!(r-1)!}$
$=\frac{17.16!}{11.10!6.5!}$	$= \frac{n!}{(n-r)!r!} + \frac{n!}{(n-r+1)!(r-1)!}$
$=\frac{17!}{11!6!}$	
$=\frac{17!}{11!(17-11)!}$	$= \frac{n!}{(n-r)!r(r-1)!} + \frac{n!}{(n-r+1)(n-r)!(r-1)!}$
$= {}^{7}C_{11}$	$= \frac{n!}{(n-r)!(r-1)!} \left(\frac{1}{r} + \frac{1}{(n-r+1)}\right)$
Alternative	$= \frac{n!}{(n-r)!(r-1)!} \left(\frac{n-r+1+r}{r(n-r+1)} \right)$
$\overline{L.H.S} = {}^{16}C_{11} + {}^{16}C_{10} = 4368 + 8008 =$	
12376(i)	$= \frac{n!}{(n-r)!(r-1)!} \left(\frac{n+1}{r(n-r+1)} \right)$
$R.H.S = {}^{7}C_{11} = 12376$	$=\frac{(n+1)n!}{(n-r+1)(n-r)!r(r-1)!}$
From (i) and (ii)	$=\frac{(n+1)!}{(n-r+1)!r!}$
L.H.S = R.H.S	$= \frac{(n-r+1)!r!}{(n+1-r)!r!}$
<u>Question#9</u>	
There are 8 men and 10 women members of a	$=$ ⁿ⁺¹ C_r
club. How many committees of can be formed,	= R.H.S
having;	

Chapter 7

Probability:

Probability is the numerical evaluation of a chance that a particular event would occur. OR Measurement of uncertainty.

Sample space:

The set S consisting of all possible outcome of a given experiment is called a sample space.

Event:

The particular outcome of an experiment is called an event.

- An event is a subset of the sample space.
- Sample space is denoted by S.
- Events are usually denoted by capital letters A, B, C ...

Mutually Exclusive (disjoint)

Events:

Two events A and B are said to be mutually exclusive occur at the same time.

e.g;

in tossing a coin, the sample space $S = \{H, T\}$ Now if event

 $A = \{H\}$ and event $B = \{T\}$, then

A and B are mutually exclusive events. Equally likely Events:

Two events A and B are said to be equally likely if each one of them has equal number of chances of occurrence. e.g when a coin is tossed, we get either head H or tail T. Chances of occurrence of head is 1/2 while chances of occurrence of tail is also 1/2 Thus the two events head and tail are equally likely events.

Note:

i Let E be an events than probability of E is denoted by P(E) and defined as $P(E) = \frac{n(E)}{n(S)}$ Number of favorable outcomes

 $=\frac{Number of further outcomes}{Number of possible outcomes}$

- ii Probability of an event must be a number lying between 0 and 1 $i.e \quad 0 \le P(E) \le 1$
- iii If P(E) = 0 then E is called certain event (i.e) Event E will must occur.

iv If P(E) = 0 is called impossible event. (i.e.; event E could not occur) Probability that an Evnt does not occur. Suppose n(S) = N and n(E) = RThen $P(E) = \frac{n(E)}{n(S)} = \frac{R}{N}$

Let \overline{E} denotes the non-occurrence of event E. then $n(\overline{E}) = N - R$

$$\Rightarrow P(\overline{E}) = \frac{n(E)}{n(S)} \Rightarrow P(\overline{E}) = \frac{N-R}{N}$$
$$\Rightarrow P(\overline{E}) = \frac{N}{N} - \frac{R}{N}$$
$$\Rightarrow P(\overline{E}) = 1 - \frac{R}{N} \Rightarrow P(\overline{E}) = 1 - P(E)$$

Exercise 7.5

For the following experiments , find the

<u>probability in each case:</u> Question#1

Experiment:

From a box containing orange-flavoured sweets, Bilal takes out one sweet without looking.

Events Happening:

<u>Solution:</u>

Suppose A is the event that sweet is orange flavoured.

Since box only contained orange flavoured sweets

So favourable outcomes = n(A) = 1

Probability = $\frac{n(A)}{n(S)} = \frac{1}{1} = 1$

(*ii*). the sweet is lemon-flavoured <u>Solution:</u>

Let B be the event that the sweet is lemon flavoured.

Since box only contained orange-flavoured sweet So favourable outcomes = n(B) = 0

Probability
$$=$$
 $\frac{n(B)}{n(S)} = \frac{0}{1} = 0$

<u>Question#2</u> <u>Experiment:</u>

Pakistan and India play a cricket match. The result is:

<u>Events Happening:</u>

(i). Pakistan wins Solution:

Since there are three possibilities that Pakistan wins, loses or the match

Class 11	Chapter 7	https://newsongoo	Wondershar PDFelement
tied.		<u>Solution:</u>	
Therefore, possible outcomes $= n(S)$	5) = 3	Let B be the event that coin shows	s at least one
Let A be the event that Pakistan wi	ns	head then favourable outcomes	
Favourable outcomes $= n(A) = 1$		are	
Required probability $= \frac{n(A)}{n(S)} = \frac{1}{3}$		ННН, ННТ, НТН, ТНН, НТТ, ТНТ,	, ТТН.
(ii). India does not lose.		i.e. $n(B) = 7$	
Solution:		So required probability $=\frac{n(B)}{n(S)}=\frac{7}{8}$	
Let B be the event that India does	not lose.	Question#5	
If India does not lose then India ma		<u>Experiment:</u>	
match tied	,	A dice is rolled. The top shows	
Therefore, favourable outcomes $= \pi$	n(B)=2	<u>Events Happening:</u>	
Probability $=$ $\frac{n(B)}{n(S)} = \frac{2}{3}$		The possible outcomes are that die	show 1, 2, 3,
Question#3		4, 5, 6.	
Experiment:		So possible outcomes $= n(S) = 6$	
There are 5 green and 3 red ba	lls in a box	(i). 3 or 4 dots	
one ball is taken out.		<u>Solution:</u>	
<u>Events Happening:</u>		Let A be the event that die show 3	or 4.
Total number of balls = $5 + 3 = 8$		Then favorable outcomes $= n(A) =$	
Therefore, possible outcomes $= n(S)$	S) = 8	So required probability $=$ $\frac{n(A)}{n(S)} = \frac{2}{6} =$	$\frac{1}{3}$
(i). the ball is green	-	(ii). dots less than 5.	5
Solution:		Solution:	
Let A be event that the ball is gree	n 🙀	Let B be the event that top of the	die show dots
Then favourable outcomes $= n(A) =$	5	less than 5 then	
So, probability $=\frac{n(A)}{n(S)}=\frac{5}{8}$	Nor	Favorable outcomes $= n(B) = 4$	
(ii). the ball is red.	?	So required probability $=\frac{n(B)}{n(S)}=\frac{4}{6}=$	$=\frac{2}{3}$
Solution:		Question#6	5
Let B be the event that the ball is r	red	<u>Experiment:</u>	
Then favourable outcomes $= n(B) =$: 3	From a box containing slip	s numbered
So, probability $=$ $\frac{n(B)}{n(S)} = \frac{3}{8}$		1,2,3,,5 one slip is picked up	
Question#4		<u>Events Happening:</u>	
Experiment:		Since the box contain 5 slips	
A fair coin is tossed three times.	It shows	So possible outcomes $= n(S) = 5$	
<u>Events Happening:</u>		(i). the number on the slip is a plant of the	rime number
When a fair coin is tossed three	e times, the	<u>Solution:</u>	
possible outcomes are HHH, HHT,		Let A be the event that the numb	er on the slip
НТТ, ТНТ, ТТН, ТТТ.		are prime numbers 2, 3 or 5	
So total possible outcomes = n(S) =	= 8	Then favorable outcomes = $n(A) = n(A)$	3
(i). One tail		So required probability $=$ $\frac{n(A)}{n(S)} = \frac{3}{5}$	
<u>Solution:</u>		(ii). the number on the slip is a l	nultiple of 3.
Let A be the event that the coin sh	nows one tail	<u>Solution:</u>	
then favourable outcomes are		Let B be the event that number on	the slips are
ННТ, НТН, ТНН,		multiple of 3 then	
i.e. $n(A) = 3$		Favorable outcomes = $n(B) = 1$	
So required probability $=$ $\frac{n(A)}{n(S)} = \frac{3}{8}$		So probability $=$ $\frac{n(B)}{n(S)} = \frac{1}{5}$	
(ii). at least one head.			

Class 11	Chapter 7	https://newsongoog	Wondershar PDFelement
		(i). The ball is black	
<u>Question#7</u>		<u>Solution:</u>	
<u>Experiment:</u>		Let A be the event that the ball is b	lack then
Two die, one red and the other	r blue, are	n(A) = 15	
rolled simultaneously. The numbers	s of dots	So required probability $=\frac{n(A)}{n(S)}=\frac{15}{40}=\frac{3}{8}$	
on the tops are added. The total	of the two	(ii). The ball is green	
scores is:		<u>Solution:</u>	
<u>Events Happening:</u>		Let B denotes the event that the bal	l is green
When two dice are rolled, the possib	le outcomes	then $n(B) = 5$	5
are		So required probability $=$ $\frac{n(B)}{n(S)} = \frac{5}{40} = \frac{1}{8}$	
(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)		(iii). The ball is not green.	
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)		(ttt): The ban is not green. <u>Solution:</u>	
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)		Let C denotes the event that the ball is	not oreen
(5,1) $(5,2)$ $(5,3)$ $(5,4)$ $(5,5)$ $(5,6)$		then ball is either black or	norgreen
(6,1) $(6,2)$ $(6,3)$ $(6,4)$ $(6,5)$ $(6,6)$		yellow therefore favorable outcomes	-n(C) -
This show possible outcomes $= n(S)$	= 36	15 + 20 = 35	= n(0) =
(<i>i</i>). 5		So required probability $=$ $\frac{n(C)}{n(S)} = \frac{35}{40} = \frac{7}{8}$	
<u>Solution:</u>			
Let A be the event that the total of	two scores	<u>Question#9</u> <u>Experiment:</u>	
is 5 then favorable outcome are		<u>Constant of 30 containing the name of 30 containing the angle of 30 con</u>	mac of 30
(1,4),(2,3),(3,2),(4,1) i.e. favorable outcomes = n(A) = 4		students of a class of 18 boys and 1	
	1	taken out at random, for nomination	-
So required probability $=$ $\frac{n(A)}{n(S)} = \frac{4}{36} =$	9	monitor of the class.	"I US IIIE
(ii).7	NO	<u>Events Happening:</u>	
Solution:		(i).the monitor is a boy	
Let B be the event that the total of is 7 then favorable outcomes	Two scores	Number of students = 30	
are $(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)$		Then possible outcomes $= n(S) = 30$	
i.e. favorable outcomes = $n(B) = 6$		Solution:	
		Now if A be the event that the monit	tor is the
So, probability $=\frac{n(B)}{n(S)} = \frac{6}{36} = \frac{1}{6}$		boy then	
(iii).11		Favorable outcomes $= n(A) = 18$	
<u>Solution:</u> Let C be the event that the total of	two coope is	So, probability $=\frac{n(A)}{n(S)}=\frac{18}{30}=\frac{3}{5}$	
11 then	Two score is	(ii). the monitor is a girl.	
favorable outcomes are (5,6), (6,5) i	$e_{n}(f) = 2$	Solution:	
So, probability $= \frac{n(B)}{n(S)} = \frac{2}{36} = \frac{1}{18}$	(0, 11(0)) = 2	Now if B be the event that the monit	tor is the
(-)		girl then	
<u>Question#8</u>		Favorable outcomes $= n(B) = 12$	
<u>Experiment:</u>		So, probability $=\frac{n(B)}{n(S)} = \frac{12}{30} = \frac{2}{5}$	
Two die, one red and the other	-		
rolled simultaneously. The numbers		<u>Question#10</u>	
on the tops are added. The total	ot the two	<u>Experiment:</u>	a ahaw
scores is: Events langening:		A coin is tossed four times. The top.	s show
<u>Events Happening:</u> Total number of balls = 40 i.e. $n(S)$ -	- 40	<u>Events Happening:</u> When the coin is tossed four times th	e noceible
Total number of balls = 40 i.e. $n(S)$ = Black balls = 15	- 40	When the coin is tossed four times the outcomes are	s hossine
Black dalls = 15 Green balls = 5		ourcomes are НННТ ННТН НТНН ТННН	
Yellow balls = $40 - (15 + 5) = 20$		ИНТТ ИТТИ ТТИИ ТИИТ	

Chapter 7

HTTT	TTTH	TTHT	THTT
TTTT	нннн	ТНТН	HTHT
i. e . n(S) = 16		
(i). all	heads		

<u>Solution:</u>

Let A be the event that the top shows all head then

favorable outcome is HHHH i.e. n(A) = 1

Now probability = $\frac{n(A)}{n(S)} = \frac{1}{16}$

(ii). 2 heads and 2 tails.

<u>Solution:</u>

Let B be the event that the top shows 2 head and two tails the favorable

outcomes are HHTT, HTTH, TTHH, THHT, THTH, HTHT

i.e. n(B) = 6

Now probability = $\frac{n(B)}{n(S)} = \frac{6}{16} = \frac{3}{8}$

Estimating probability and Tally Marks:

Exercise 7.6

<u>Question#1</u>

A fair coin is tossed 30 times, the result of which is tabulated below. Study the table and answer the questions given below the table:

Event	Tally Marks	Frequency
Head	++++ ++++	14
Tail	++++ ++++ ++++	16

<u>Solution:</u>

From the table, total outcomes = $30 \Rightarrow n(S) = 30$ From the table, we see that (i). How many times does 'head' appear?

<u>Solution:</u>

Let A=event the times 'head' appears $\Rightarrow n(\textbf{A})=14$

(*ii*). How many times does 'tail' appear? <u>Solution:</u>

Let B = event the times 'tail' appears $\Rightarrow n(B) = 16$

(*iii*). Estimate the probability of the appearance of head? <u>Solution:</u>

https://newsongooglWondershare
PDFelementProbability that head appears = $P(A) = \frac{n(A)}{n(S)} =$ $\frac{14}{30} = \frac{7}{15}$ (iv). Estimate the probability of the
appearance of tail?Solution:
Probability that tail appears = $P(B) = \frac{n(B)}{n(S)} = \frac{16}{30} =$ $\frac{8}{15}$

<u>Question#2</u>

A die is tossed 100 times. The result is tabulated below. Study the table and answer the questions given below the table:

Event	Tally Marks	Frequency
1	++++ ++++	14
2	++++ ++++ ++++	17
3	++++ ++++ ++++	20
4	++++ ++++ ++++	18
5	++++ ++++	15
6	++++ ++++ ++++ 1	16

Solution:

From the table, total outcomes $= 100 \Rightarrow n(S) = 100$

From the table, we see that

(i). How many times do 3 dots appear? <u>Solution:</u>

Let A = event the number of times 3 dots appears \Rightarrow n(A) = 20

(*ii*). How many times do 5 dots appear? <u>Solution:</u>

Let B = event the number of times **5** dots appears \Rightarrow n(B) = 15

(iii). How many times does an even number of dots appear?

<u>Solution:</u>

Let C = event the number of times, even number of dots appears \Rightarrow n(C) = 17 + 18 + 16 = 51

(*iv*). How many times does a prime number of dots appear?

Solution:

Let C = event the number of times, even number of dots appears \Rightarrow n(D) = 17 + 15 + 20 = 52 (v). Find the probability of each one of the above cases. Solution:

Chapter 7

Required probabilities are as :

$\mathbf{P}(\mathbf{A}) = \frac{n(A)}{n(S)} = \frac{20}{100} = \frac{1}{5}$
$\mathbf{P(B)} = \frac{n(B)}{n(S)} = \frac{15}{100} = \frac{3}{20}$
$\mathbf{P(C)} = \frac{n(C)}{n(S)} = \frac{51}{100}$
$\mathbf{P}(\mathbf{D}) = \frac{n(D)}{n(S)} = \frac{52}{100} = \frac{13}{25}$

<u>Question#3</u>

The eggs supplied by a poultry farm during a week broke during transit as follows:

1% , 2% , $1\frac{1}{2}\%$, $\frac{1}{2}\%$, 1% , 2% , 1%

Find the probability of the eggs that broke in a day. Calculate the number of eggs that will be broken in transiting the following number of eggs:

Solution:

total eggs = $70 \Rightarrow n(S) = 70$ Let A = event the egg broke $\Rightarrow n(A) = 1 + 2 + 1.5 + 0.5 + 1 + 2 + 1 = 9$

 $\mathbf{P}(\mathbf{A}) = \frac{\mathbf{n}(\mathbf{A})}{\mathbf{n}(\mathbf{S})} = \frac{9}{700}$

(*i*). 7,000

Solution:

Number of eggs broke in 7,000 = 7,000 $\times \frac{9}{700} = 90$ (*ii*). 8,400

Solution:

Number of eggs broke in $8,400 = 8,400 \times \frac{9}{700} = 108$

iii) 10,500

Eggs are 10500 then broken eggs = $10500 \times \frac{9}{100}$

= 135

Addition of probabilities: Suppose A and B be two events.

then $P(A \text{ or } B) = P(A \cup B) = P(A) + P(B)$

https://newsongoog

if A and B are overlapping

 $A \cup B$

Wondershare PDFelement

then $P(Aor B) = P(A \cup B)$ = $P(A) + P(B) - P(A \cap B)$

Event	Broken Eggs	Number of eggs
1	1	100
2	2	100
3	$1\frac{1}{2} = 1.5$	100
4	$\frac{1}{2} = 0.5$	100
5	$\frac{-}{2} = 0.5$	100
6	1	100
7	2	100
	1	

then $P(A \text{ or } B) = P(A \cup B)$ = $P(A) + P(B) - P(A \cap B)$

Exercise 7.7

<u>Question#1</u> *If* sample space = $\{1, 2, 3, 9\}$, *Event* A = $\{2, 4, 6, 8\}$ and Event $B = \{1, 3, 5\},\$ find $P(A \cup B)$. <u>Solution:</u> Sample space = $\{1, 2, 3, \dots, 9\}$ then n(S) = 9Since event $A = \{2, 4, 6, 8\}$ then n(A) = 4Also, event $B = \{1,3,5\}$ then n(B) = 3Now $P(A \cup B) = P(A) + P(B)$ $=\frac{n(A)}{n(B)}+\frac{n(B)}{n(C)}$ n(S) n(S)

Class 11 Chapter 7		PDFelement
$=\frac{4}{9}+\frac{3}{9}=\frac{7}{9}$	$=\frac{16+10-3}{50}$	
9 9 9 <u>Question#2</u>	$=\frac{23}{50}^{50}$	
A box contains 10 red, 30 white and 20 black	⁵⁰ Question#4	
marbles. A marble is drawn at random. Find		52 plaving
the probability that it is either red or white.	A card is drawn from a deck of	
Solution:	cards. What is the probability the diamond card or an ace?	nat it is a
Red marble = 10		
White marble $= 30$	<u>Solution:</u>	
Black marble = 20	Total number of cards = 52 ,	50
Total marble = $10 + 30 + 20 = 60$	therefore, possible outcomes $= n(S)$	
Therefore	Let A be the event that the card is	s a alamona
n(S) = 60	card.	ما حالہ جالہ ا
Let A be the event that the marble is red then	Since there are 13 diamond cards i	n the deck
n(A) = 10	therefore $n(A) = 13$,
And let B be the event that the marble is white	Now let B the event that the card is a	
then $n(B) = 30$	Since there are 4 ace cards in	тпе аеск
Since A and B are mutually exclusive event	therefore $n(B) = 4$,
therefore,	Since one diamond card is also a	n ace cara
$Probability = P(A \cup B) = P(A) + P(B)$	therefore A and B are not mutually	
$=\frac{n(A)}{n(S)} + \frac{n(B)}{n(S)}$	exclusive event and $n(A \cap B) = 1$	
	Now probability $= P(A \cup B) = P(A \cup B)$	(A) + P(B) -
$=\frac{10}{60}+\frac{30}{60}$	$P(A \cap B)$ n(A) n(B) n(A \cap B)	
$=\frac{40}{60}=\frac{2}{3}$	$-\frac{1}{n(S)}+\frac{1}{n(S)}-\frac{1}{n(S)}$	
Question#3	$=\frac{13}{52}+\frac{4}{52}-\frac{1}{52}$	
A natural number is chosen out of the first	$=\frac{13+4-1}{52}$	
fifty natural numbers. What is the probability	$=\frac{16}{52}^{52}$	
that the chosen number is a multiple of 3 or	$=\frac{52}{4}$	
of 5?		
<u>Solution:</u>	<u>Question#5</u>	nuch chilite
Since sample space is first fifty natural number	A die is thrown twice. What is the that the sum of the number of do	
so $S = \{1, 2, 3, \dots, 50\}$	3 or 11?	is shown is
Then $n(S) = 50$		
Let A be the event that the chosen number is a	<u>Solution:</u>	
multiple of 3 then	When die is thrown twice the possibl	e our comes
$A = \{3, 6, 9, \dots, 48\}$	are (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)	
so , $n(A) = 16$	(1,1)(1,2)(1,3)(1,4)(1,3)(1,0) (2,1)(2,2)(2,3)(2,4)(2,5)(2,6)	
If B be the event that the chosen number is	(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)	
multiple of 5 then	(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)	
$B = \{5, 10, 15, \dots, 50\}$	(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)	
so, $n(B) = 10$	(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)	26
Now $A \cap B = \{15, 30, 45\}$	This shows possible outcomes $= n(S)$	= 36
so, $n(A \cap B) = 3$	Let A be the event that the sum is 3	(1.0)
Since A and B are not mutually exclusive event	Then the favourable outcomes are	2 (1,2) and
therefore $P_{P_{1}}(A \cup B) = P(A) \cup P(B) = P(A \cap B)$	(2, 1), i.e. n(A) = 2	1.1
Probability = $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ n(A), n(B) $n(A \cap B)$	Now let B the event that the sum is :	
$= \frac{\mathbf{n}(\mathbf{A})}{\mathbf{n}(\mathbf{S})} + \frac{\mathbf{n}(\mathbf{B})}{\mathbf{n}(\mathbf{S})} - \frac{\mathbf{n}(\mathbf{A} \cap \mathbf{B})}{\mathbf{n}(\mathbf{S})}$	Then the favourable outcomes are	: (5,6) and
$=\frac{16}{50}+\frac{10}{50}-\frac{3}{50}$	(6,5) i.e. $n(B) = 2$	

Class 11 Chapte	er 7 https://newsongoogle.
Since A and B are mutually exclusive event	ts i.e. favourable outcomes $= n(A) = 18$
therefore	Sine B is the event that the least one die has 3
$Probability = P(A \cup B) = P(A) + P(B)$	dot on it therefore Favourable outcomes are (1
$= \frac{n(A)}{n(S)} + \frac{n(B)}{n(S)}$	3), (2, 3), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 3)
), (5, 3), (6, 3) i.e. favourable outcomes
$=\frac{2}{36}+\frac{2}{36}$	= n(B) = 11
$=\frac{4}{36}$	Since A and B have common outcome
$=\frac{1}{9}$	(2,3), (3,2), (3,4), (3,6), (4,3), (6,3)
Question#6	i.e. $n(A \cap B) = 6$
Two dice are thrown. What is the probabilit	ty Now probability $= P(A \cup B) = P(A) + P(B) -$
that the sum of the numbers of dots appearin	$P(A \cap B)$
on them is 4 or 6 ?	$= \frac{n(x)}{n(S)} + \frac{n(S)}{n(S)} - \frac{n(x) B}{n(S)}$
Solution:	$=\frac{18}{36}+\frac{11}{36}-\frac{6}{36}$
n(S) = 36	$=\frac{\frac{36}{36}+\frac{36}{36}}{\frac{36}{36}}$
A represent sum is 4	
B represents sum is 6	$=\frac{23}{36}$
$A = \{(1,3)(2,2), (3,1)\}$	Question#8
, n(A) = 3 $B = \{(1,5), (2,4), (3,3), (4,2), (5,1)\}$	There are 10 girls and 20 boys in a class.
$B = \{(1, 3), (2, 4), (3, 3), (4, 2), (3, 1)\}$, $n(B) = 5$	Half of the boys and half of the girls have
	blue eyes. Find the probability that one
$P(A) = \frac{n(A)}{n(B)} = \frac{3}{36}$	student chosen as monitor is either a girl or
$P(B) = \frac{n(B)}{n(S)} = \frac{5}{36}$	has blue eyes.
	<u>Solution:</u>
$\therefore A \cap B = \phi(A \text{ and } B \text{ are disjoint events})$	Number of girls $= 10$
$\Rightarrow P(A \cup B) = P(A) + P(B)$	Number of boys $= 20$
$=\frac{3}{36}+\frac{5}{36}=\frac{8}{36}$	Total number of students = $10 + 20 = 30$
$P(A \cup B) = \frac{2}{9}$	Since half of the girls and half of the boys have
	blue eyes
Question#7	Therefore, students having blue eyes $= 5 + 1$
Two dice are thrown simultaneously. If th	
event A is that the sum of the numbers of	
dots shown is an odd number and the event	
is that the number of dots shown on at leas	
one die is 3. Find $P(A \cup B)$.	class is girl then $n(B) = 10$
<u>Solution:</u>	Since 5 girls have blue eyes therefore A and B
When two dice are thrown the possible outcome	
are	Therefore,
(1,1)(1,2)(1,3)(1,4)(1,5)(1,6) (2,1)(2,2)(2,3)(2,4)(2,5)(2,6)	$n(A \cap B) = 5$
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)	Now probability = $P(A \cup B)$ = $P(A) + P(B) = P(A \cap B)$
(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)	$= P(A) + P(B) - P(A \cap B)$ n(A) n(B) n(A \cap B)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)	$=\frac{\mathbf{n}(\mathbf{A})}{\mathbf{n}(\mathbf{S})} + \frac{\mathbf{n}(\mathbf{B})}{\mathbf{n}(\mathbf{S})} - \frac{\mathbf{n}(\mathbf{A} \cap \mathbf{B})}{\mathbf{n}(\mathbf{S})}$
(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)	$=\frac{15}{10}+\frac{10}{30}-\frac{5}{30}$
This shows possible outcomes $= n(S) = 36$	$=\frac{15+10-5}{20}$
Since A be the event that the sum of dots is an	
odd number	$ \begin{array}{c} $
Then favourable outcomes are	
(1, 2), (1, 4), (1, 6), (2, 1), (2, 3), (2, 5), (3, 2), (3, 4), (4, 5), (5, 2), (5, 4), (5, 5), (5, 2), (5, 4), (5, 6), (5,	
(4, 1), (4, 3), (4, 5), (5, 2), (5, 4), (5, 6), (6, 1), (6, 3), (6, 1), (6, 2), (6, 1), (6, 3), (6, 1), (6, 3), (6, 1), (6, 2), (6, 1), (6, 3), (6, 1), (6, 3), (6, 1), (6, 2), (6, 1), (6, 2), (6, 1), (6, 2),	(6,5)
<u> </u>	18 P a g e

Class	1	1
-------	---	---

Exercise 7.8

Wondershare PDFelement

Note "Plying card" Question#1 52 red black 26 26 Heart diamond 13 13 Club 13 Solution: Since Each type (Heart, Diamond, Club, Sped) $P(A) = \frac{5}{7}$ Consists of One – Ace And *One* – *king* One – Queen $P(B) = \frac{7}{2}$ one – jack Multiplication of Probabilities is **Dependent Event:** Two events are said to be dependent, if the <u>Question#2</u> occurrence of any one of them affect the occurrence of the other. **Independent Events:** two events are said to be independent, if the occurrence of the other. Solution: Theorem: If A and , B are independent events, the 1, 2, 3, 4, 5, 6 probability events that both of them occur is equal to the probability of the occurrence of B. Symbolically, it is denoted by $P(A \cap B) = P(A).P(B)$ Proof: Let event A belong to the sample space S, such that $n(S_1) = n_1$ and $n(A) = m_1$ $=\frac{3}{6}$ \Rightarrow let event B belong to the sample sapce S_2 $=\frac{1}{2}$ Such that $n(S_2) = n_2$ and $n(B) = m_2$ $\Rightarrow P(B) = \frac{m_2}{n_2}$ Favorable case of $A \cap B = m_1 m_2$ Possible cases of $A \cap B = n_1 n_2$ $P(A \cap B) = \frac{favorable\ case}{a}$ $n(E_2) = 2$ possible case $m_1 m_2$ $=\frac{2}{6}$ $=\frac{m_1}{n_1}\cdot\frac{m_2}{n_2}$ $\Rightarrow P(A \cap B) = P(A).P(B)$ $n(E_1 \cap E_2) = 1$ So,(i) Now

The probability that a person A will be alive 15 years hence is $\frac{5}{7}$ and the probability that another person B will be alive 15 years hence is $\frac{7}{2}$. Find the probability that both will be alive 15 years hence. Then the probability that both will alive 15 year $P(A \cap B) = P(A). P(B) = \frac{5}{7} \cdot \frac{7}{9} = \frac{5}{9}$ A die is rolled twice: Event E_1 is the appearance of even number of dots and event E_2 is the appearance of more than 4 dots. **Prove that:** $P(E_1 \cap E_2) = P(E_1) \cdot P(E_2)$ When a die is rolled then possible outcomes are This shows that possible outcomes = n(S) = 6Since 1 E is the event that the dots on the die are even then favourable outcomes are 2,4,6 this shows $n(E_1) = 3$ So, probability = $P(E_1) = \frac{n(E_1)}{n(S)}$ Now since E_2 is the event that the dot appear are more than four then favourable outcomes are 5 and 6. This show So, probability = $P(E_2) = \frac{n(E_2)}{n(S)}$ Since E_1 and E_1 are not mutually exclusive And the possible common outcome is 6 i.e. probability $P(E_1 \cap E_2) = \frac{n(E_1 \cap E_2)}{n(S)} = \frac{1}{6}$

Class 11	Chapter 7	https://newsongoogle	
$P(E_1).P(E_2) = \frac{1}{2}.\frac{1}{3} = \frac{1}{6}$ (ii)		Let A be the event that first card is an ace	
Form (i) and (ii)		then $n(A) = 4$	
$P(E_1 \cap E_2) = P(E_1) \cdot P(E_2)$		And let B be the event that the second card is	;
Proved		also an ace then $n(B) = 4$	
Question#3		Now probability = $P(A \cap B) = P(A).P(B)$	
Determine the probability of get	ting 2 heads	$=\frac{\mathbf{n}(\mathbf{A})}{\mathbf{n}(\mathbf{S})}\cdot\frac{\mathbf{n}(\mathbf{B})}{\mathbf{n}(\mathbf{S})}$	
in two successive tosses of a bala	-	$=\frac{4}{52}\cdot\frac{4}{52}$	
coin.			
<u>Solution:</u>		$=\frac{1}{169}$	
When two coins are tossed t	hen possible	<u>Question#6</u>	
outcomes are		Two cards from a deck of 52 playing cards an	
НН, НТ, ТН, ТТ		drawn in such a way that the card is replace	
i.e. n(S) = 4		after the first draw. Find the probabilities	In
Let A be the event of getting tw	o heads then	the following cases:	
favourable outcome is HH.		(i). first card is king and the second is a que	:/1
so , n(A) = 1		<u>Solution:</u>	
Now probability = $P(A) = \frac{n(A)}{n(S)} = \frac{1}{4}$		Let A be the event that the first card is kinet the matrix A	ıg
Question#4		then $n(A) = 4$ and let B be the event that the second card	i
Two coins are tossed twice eac	ch. Find the	queen then $n(B) = 4$	15
probability that the head appears		Now probability = $P(A \cap B) = P(A). P(B)$	
toss and the same faces appeal		•	
tosses.		$= \frac{n(A)}{n(S)} \cdot \frac{n(B)}{n(S)}$	
Solution:	8	$=\frac{4}{52}\cdot\frac{4}{52}$	
When the two coins are tossed .	then possible	$=\frac{1}{169}$	
outcomes are		(ii). both the cards are faced cards i.e. king	g,
НН, НТ, ТН, ТТ		queen, jack.	
This shows $n(S) = 4$		<u>Solution:</u>	
Let A be the event that head appea	ar in the first	Let C be the event that first card is faced car	d.
toss then		Since there are 12 faced cards in the dec	:k
favourable outcomes are HT, HH, i	.e. $n(A) = 2$	therefore $n(C) = 12$	
Let B be the event that same face (appear on the	and let D be the event that the second card	is
second toss then		also faced card then $n(D) = 12$	
favourable outcomes are HH, TT. i.	e . $n(B) = 2$	Now probability = $P(A \cap B) = P(A). P(B)$	
Now probability = $P(A \cap B) = P(A)$.	P(B)	$= \frac{\mathbf{n}(\mathbf{A})}{\mathbf{n}(\mathbf{S})} \cdot \frac{\mathbf{n}(\mathbf{B})}{\mathbf{n}(\mathbf{S})}$	
$= \frac{\mathbf{n}(\mathbf{A})}{\mathbf{n}(\mathbf{S})} \cdot \frac{\mathbf{n}(\mathbf{B})}{\mathbf{n}(\mathbf{S})}$		$=\frac{12}{52}\cdot\frac{12}{52}$	
$=\frac{1}{4}\cdot\frac{2}{4}\cdot\frac{2}{4}$		$=\frac{52}{13}\cdot\frac{52}{13}$	
4 · 4 _ 1 1			
$=\frac{1}{2}\cdot\frac{1}{2}$		$=\frac{9}{169}$	
$=\frac{1}{4}$		<u>Question#7</u>	
Question#5		Two dice are thrown twice. What is probabili	·
Two cards are drawn from a deck		that sum of the dots shown in the first thro	W
cards. If one card is drawn of		is 7 and that of the second throw is 11?	
before drawing the second car		<u>Solution:</u>	
probability that both the cards a	are aces.	When the two dice are thrown the possib	ie
<u>Solution:</u>		outcomes are (1 1) (1 2) (1 3) (1 4) (1 5) (1 6)	
Since there are 52 cards in the de $r(s) = 52$	CK therefore	(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)	
n(S) = 52			

Class 11	Chapter 7	https://newsongoogle	Wondershare PDFelement
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6) (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6) (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) Which shows that n(S) = 36 Let A be the event that the sum of throw is 7 then favourable ou (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1) i. Let B be the event that the sum second throw is 11 then favourable outcomes are (5, 6), (6, 5) Now probability = P(A ∩ B) = P(A). P = $\frac{n(A)}{n(S)} \cdot \frac{n(B)}{n(S)}$ = $\frac{6}{36} \cdot \frac{2}{36}$ = $\frac{1}{6} \cdot \frac{1}{18}$ = $\frac{1}{108}$ Guestion##8 Find the probability that the s appearing in two successive throws dice is every time 7. Solution: When the two dice are thrown outcomes are (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6) (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6) (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) Which shows that n(S) = 36 Let A be the event that the sum of throw is 7 then favourable outcomes (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1) i. Let B be the event that the sum second throw is also 7 then similarly, favourable outcomes = n(1) Now probability = P(A ∩ B) = P(A).F = $\frac{n(A)}{n(S)} \cdot \frac{n(B)}{n(S)}$ = $\frac{6}{36} \cdot \frac{5}{36}$ = $\frac{1}{6} \cdot \frac{1}{6}$ = $\frac{1}{1} \cdot \frac{1}{36}$	dots in first tcomes are e. $n(A) = 6$ n of dots in i.e. $n(B) = 2$ (B) um of dots s of two the possible dots in first are e. $n(A) = 6$ n of dots in 3) = 6 (B)	Question#9 A fair die is thrown twice. Find to that a prime number of dots of first throw and the number of second throw is less than 5. <u>Solution:</u> When the die is thrown twice the show 1, 2, 3, 4, 5, 6 This shows possible outcomes = no Let A be the event that the numb is prime then favourable outcomes are 2, 3, 5, i.d. Let B be the event that the num second throw is less than 5 then favourable outcomes are 1, 2, 4 Now probability = P(A \cap B) = P(A) = $\frac{n(A)}{n(S)} \cdot \frac{n(B)}{n(S)}$ = $\frac{3}{6} \cdot \frac{4}{6}$ = $\frac{1}{2} \cdot \frac{2}{3}$ = $\frac{1}{3}$ <u>Question#10</u> A bag contains 8 red, 5 white an balls, 3 balls are drawn from the is the probability that the first the second ball is white, and the black, when every time the ball Hint: $(\frac{8}{20}), (\frac{5}{20}), (\frac{7}{20})$ is the proba- <u>Solution:</u> Since number of red balls = 8 Number of white balls = 5 Number of black balls = 7	the probability appear in the f dots in the f dots in the en the top may (S) = 6 er of the dots e. n(A) = 3 ber of dots in ,3,4 i.e. $n(B) =.P(B)and 7 blacke$ bag. What ball is red, e third ball is is replaced?

A project of: https://newsongoogle.com/ Contact t Us: bilalarticles1@gmail.com